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Abstract: The continued development of computational and synthetic methods has enabled the enumeration or prepara-

tion of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small 

molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic 

of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, com-

mercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, 

cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical 

probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access 

to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed 

to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform 

(OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant dis-

ease biology models. In this article we will discuss several computational approaches towards describing novel, biologi-

cally active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped 

molecules that may aid in the search for innovative pharmaceuticals. 
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1. INTRODUCTION 

 The innovation gap in drug discovery research is a topic 
referenced daily in the popular press and in scientific jour-
nals [1, 3]. The challenge of identifying new molecular scaf-
folds for unprecedented biological targets is a key contribu-
tor to this gap. Although the set of hypothetical organic 
chemical structures is essentially limitless (number of possi-
ble molecules is estimated to be between 1018 and 10200) [4], 
resource constraints have steered researchers toward tech-
niques that will generate the most compounds in the shortest 
time, rather than broadly interrogating “chemical space.” 
Chemical space can be defined as the potential universe of 
chemical structures, wherein the dimensions of that space 
can be any set of properties chosen in order to differentiate 
between molecules that are more or less similar. Subsets of 
this chemical space include “drug-like chemical space”, the 
proportion of chemical space with property constraints ap-
propriate for pharmaceuticals, and “biologically active 
chemical space”, the proportion of chemical space with 
properties conducive to interacting with biological targets. In 
fact, drug discovery has substantially broadened our under-
standing of this chemical space through the exploration of 
more complex and topologically diverse structures, including 
natural products, peptides, and fragments. 
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 Today, small molecules can be synthesized in greater 
numbers and diversity than ever before. The fundamental 
question of whether there is sufficient overlap between drug-
like chemical space and biologically active chemical space to 
provide sufficient substrate for future drug discovery efforts 
remains unanswered. Furthermore, the size of a chemical 
library required to adequately represent this diversity is un-
known. Since no single chemical library can practically 
cover chemical space, it is intriguing to consider how a di-
verse chemical library assembled from contributing scientists 
from around the globe, might compare to currently available 
sources and be utilized to deepen our understanding of bio-
logical systems. 

 To address some of the questions described above, Lilly 
has established a global network with academic institutions 
and small biotech companies. Through this network, known 
as Open Innovation Drug Discovery (OIDD), researchers are 
invited to submit compounds for evaluation in proprietary 
biological assays in return for detailed, publication-quality 
data from those assays. By providing a secure platform pro-
tecting intellectual property, the OIDD program lowers the 
barrier for collaborations between researchers working in 
different organizations (Fig. 1). In this paper, we describe the 
OIDD program and how it provides opportunities for affili-
ated researchers to uncover possible biological activities of 
novel chemical structures as well as to test experimental hy-
potheses. In addition, we will discuss how the unique charac-
teristics of this expanding chemical library may help to en-
hance efforts to identify new breakthroughs in important 
areas of unmet medical need.  
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Fig. (1). The Open Innovation Drug Discovery Platform Model. 

 
2. THE OPEN INNOVATION DRUG DISCOVERY 
PLATFORM AT A GLANCE 

 The OIDD program was designed to encourage collabo-
ration between Lilly scientists and external researchers and 
to access the novel chemical diversity present in individual 
research laboratories throughout the world. The program 
incorporates both phenotypic and target-based, disease-
relevant biological assays and makes these available to re-
searchers for evaluation of their novel compounds. Many 
scientists have molecules that they would like to explore as 
potential medicines, but for a variety of reasons they are un-
able to advance this work. By minimizing the barriers to 
sharing compounds and scientific data, Lilly hopes to en-
courage interaction between Lilly scientists and researchers 
at other institutions. 

 The OIDD web-based interface serves as the central 
means of connecting external investigators with Lilly scien-
tists. Via the secure portal, participants upload and submit 
structures of their compounds to be evaluated for novelty 
and reasonable drug-like characteristics (vide infra). Should 
a molecule be selected, investigators submit the physical 
sample to Lilly for testing. In exchange for the submission, 
the investigator receives a full report of all the biological 
data generated. Once testing is completed, Lilly evaluates the 
data and determines whether to initiate further collaboration 
discussions. 

 The experimental centerpiece of the OIDD program is 
the panel of proprietary In vitro biological assays. These 
assays are organized in project modules that are closely 
aligned with internal scientific research in areas of long-term 
strategic interest such as endocrine, cardiovascular, neuro-
science, and oncology. Phenotypic modules query complex 
cellular systems instead of specific targets, thereby interro-

gating the relevant biological framework without predis-
posed bias toward mechanism(s). In this case, the modules 
identify compound actives that may interact with one or 
more targets or pathways not anticipated by a single mecha-
nism-driven hypothesis. In essence, phenotypic approaches 
screen multiple mechanisms and targets simultaneously. Fur-
thermore, since the initial readouts from cellular assays are 
more information-rich, the connection of compound action to 
disease-relevant phenotypes is established earlier in the drug 
discovery process. The challenge with this approach lies in 
the complexity of fully understanding and assessing com-
pound differentiation and elucidating with greater resolution 
the possible mechanisms of action. Fortunately, this com-
plexity has been substantially reduced with the development 
of advanced assay technologies and informatics tools that 
make these challenges tractable for drug discovery. 

 The target-based modules focus on evaluation of a dis-
ease hypothesis through the testing of molecules designed to 
interact with a specific genomic target believed to be in-
volved in pathogenesis. With the sequencing of the human 
genome and the development of many high throughput and 
complimentary drug discovery technologies, target-based 
drug discovery has been the primary strategy of many phar-
maceutical companies during the past 20 years. This ap-
proach has been advanced by the development of computa-
tional and informatics tools that aid scientists in the design, 
selection and optimization of molecules for specific en-
zymes, receptors and other bioactive proteins. 

 Finally, the OIDD program also includes access to the 
state-of-the-art TB assay models run by the Infectious Dis-
ease Research Institute (IDRI) as part of the Lilly TB Drug 
Discovery Initiative (tbdrugdiscovery.org). Through this 
initiative, Lilly has opened access to its drug discovery ex-
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pertise and scientific resources, and facilitates interaction 
between external investigators participating in OIDD and the 
scientists at IDRI. 

 Since the inception of the program, about 170,000 virtual 
structures have been uploaded into the system and about 
70,000 have been accepted (Fig. 2). 

 To date, approximately 20,000 samples have been re-
ceived and evaluated in biological assays. As illustrated by 
the hit rates and promiscuity graphics (Fig. 3), the OIDD 
program is indeed uncovering biologically active compounds 
with specificity across modules, with 82 % of the active 
compounds showing activity in only a single module. As 
expected, promiscuity is more apparent in phenotypic versus 
target-based assays. 

3. OIDD CHEMINFORMATICS GUIDELINES 

 As a matter of practicality, Lilly does not wish to dupli-
cate biological data for compounds already in our collection. 
In addition, our intent is to focus our biological testing on 
novel chemical diversity distinct from molecules disclosed in 
the literature, with reasonable drug-like properties. However, 
analyses of these parameters for a given compound would 
normally require disclosure of the chemical structure which 
may compromise intellectual property rights for an inventor. 

 In order to avoid this issue, a secure, automated chemin-
formatics analysis was enabled, whereby structures are con-
verted to a set of bit-strings (molecular fingerprints) on the 
secure OIDD web application server and stored in the OIDD 
database. For those computations that need to be performed 
on Lilly internal cheminformatics servers, fingerprints, and 
not the structure itself, are transferred. 

 Within the secure website, submitted molecular struc-
tures are processed by the Lilly Medicinal Chemistry Rules 
(Lilly MedChem Rules) [5]. The Lilly MedChem Rules are 
comprised of a set of 275 rules, developed over an 18-year 
period, to identify compounds that may interfere with bio-
logical assays, allowing their removal from screening sets. 

Reasons for rejection include reactivity (e.g., acyl halides), 
interference with assay measurements (fluorescence, absor-
bance, quenching), activities that damage proteins (oxidizers, 
detergents), instability (e.g., latent aldehydes), and lack of 
druggability (e.g., compounds lacking both oxygen and ni-
trogen). The structural queries were profiled for frequency of 
occurrence in drug-like and non-drug-like compound sets 
and were extensively reviewed by a panel of experts (me-
dicinal chemists). Also, an index of biological promiscuity 
was developed for profiling the rules and as a filter in its 
own right [5]. Approximately 600 gene targets with screen-
ing data at Lilly were assigned to 17 subfamilies, and the 
number of subfamilies at which a compound was active was 
used as a promiscuity index [5]. For certain compounds, 
promiscuous activity disappeared after sample repurification, 
indicating interference from concealed contaminants. Be-
cause this type of interference is not amenable to substruc-
ture search, a “nuisance list” was developed to flag interfer-
ing compounds that passed the substructure rules. 

 Next, and in order to identify and exclude those com-
pounds containing undesirable features, further processing is 
performed to determine other molecular properties that help 
identify structures with the highest probability of success. 
These include MW, cLogP, solubility, and toxicity, among 
others. In addition to substructure-based filters, the Lilly 
MedChem Rules discard any molecule with fewer than 7 
heavy atoms, or more than 50 heavy atoms. There are also 
limits on number of rings, number of aromatic rings, ring 
size and similar features. Unlike other rule sets, a molecule 
may be discarded due to the combined impact of multiple, 
undesirable features being present [5]. 

 Finally, the molecular fingerprints are transferred to the 
internal cheminformatics evaluation servers to enable diver-
sity analyses as compared to the Lilly internal collection, 
overlap comparisons to publicly available structures, and a 
check of similarity to controlled substances. An automated 
process performs these comparisons, destroys any informa-
tion used to perform the analysis, and returns an overall de-
sirability score. The cheminformatics evaluation is 

 

Fig. (2). OIDD Chemoinformatic Filter Acceptance Rate. 
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Fig. (3). OIDD Modules Hit Rates & Promiscuity. 

 
accomplished without Lilly personnel being able to view 
and/or access the submitted structures to retain the confiden-
tiality of the OIDD submitter’s compounds (see Fig. 4). 

4. OIDD CHEMINFORMATICS PROCESSING 

 The OIDD cheminformatics processing is designed to 
rapidly evaluate large numbers of structurally-blinded mole-
cules. There are three steps performed within the secured 
area of the OIDD web site: fingerprint generation and Lilly 
MedChem Rules check, as described in section 3, followed 
by comparison with previous submissions. The molecular 
fingerprints are a critical component of the molecular simi-
larity comparisons [6] and model predictions used in the 
evaluation of the submitted structures. For the molecules that 
pass the cheminformatic evaluation on the external secure 
site, these fingerprints are the only information that passes 
the Lilly firewall to the internal cheminformatics server. It is 
noteworthy that the fingerprints that cross the firewall con-
tain no identifying information that would enable discovery 
of a link to an outside entity; additionally the fingerprint is 
accompanied only by a system-generated random identifier. 

 Of the many different kinds of molecular fingerprints 
available, OIDD uses hashed linear path fingerprints, hashed 
circular fingerprints and encoded whole molecule properties. 
It is important to note that none of the dictionary-based fin-
gerprints are used in order to increase the encryption of the 
molecule and limit ability to reconstruct a molecule from this 
set of fingerprints. The hashed linear path fingerprints are 
conceptually similar to Daylight3 fingerprints [7], Che-
mAxon Marvin4 fingerprints [8], a subset of the Tripos5 
fingerprints [9], and others. All paths to a given length are 
generated, and a number in the range 0-232 generated for 
each path. That number is then hashed to a constant width of 
2048 bits. Since there are many more paths than 2048, inevi-
tably there will be hash collisions, where different paths set 
the same bit. At 2048 bits, on average the collision rate is 
around 3%. These bits record presence or absence of a fea-

ture (or features), and thus are insensitive to repeated fea-
tures. 

 The hashed circular fingerprints are conceptually similar 
to the fingerprints available in Pipeline Pilot6 [10]. For each 
atom in the molecule, concentric shells are examined. For 
each shell, a number in the range 0-232 is generated, often 
including integer overflow. Unlike the linear path finger-
prints, these fingerprints include a count of the number of 
features found. Again, there can be collisions due to acciden-
tal corruptions in the computation of atom types and shells, 
as well as during unsigned integer overflow. To circumvent 
the issue of repeated features in the linear path fingerprints, 
these fingerprints are often combined with a small set of 
whole molecular properties. This augmentation has proven to 
yield better similarity measures than what would otherwise 
be obtained by ignoring repeated features. The features used 
are: number of heavy atoms, size of the largest ring, number 
of rings, number of ring atoms, aromatic atoms, fused ring 
atoms, number of heteroatoms, and the number of unsatu-
rated atoms. 

 The overall similarity measure between two fingerprints 
is a combination of the differences in these properties and 
the Tanimoto measure of the fingerprints. The intent is to 
correct for deficiencies that come from hashed, binary, linear 
path fingerprints. Over many years of use and tuning, this 
particular combination has gained widespread acceptance 
among the Medicinal and Computational Chemistry commu-
nity, as it represents a good compromise between speed of 
computation and results. Better similarity measures can be 
computed using counted features and non linear shapes, but 
because they are counted, they cannot use the tremendous 
efficiencies available to binary fingerprints, and so their sig-
nificantly longer computation times restrict their role to 
situations where accuracy is more important than speed. 

 In order to better protect the intellectual property of the 
OIDD submitters, while deriving maximum information 
from the limited assay capacity available, molecules that are 
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Fig. (4). The Open Innovation Drug Discovery Program Security Provisions. 

 
too similar to those that have previously been submitted by 
another user are excluded from testing. To accomplish this 
comparison, the fingerprints of compounds submitted for 
screening are continually stored and then as part of an 
evaluation outside the firewall, a Tanimoto similarity com-
parison of the fingerprints of the new compounds to those 
previously submitted is carried out. Molecules that are found 
to have a 90% or higher similarity to a previous submission 
are discarded for insufficient novelty. Storing these finger-
prints outside the firewall, in a secure location, is part of the 
safety measures that the OIDD program takes to protect the 
submitted structures. 

 For molecules passing the cheminformatic evaluation 
outside the firewall, the corresponding fingerprints pass the 
Lilly firewall to perform a controlled substance check and 
comparison with known drugs, the Lilly and PubChem col-
lections. Molecules exhibiting over 90% similarity to a 
known controlled substance or greater than 85% similar to a 
known drug are discarded. Kernel-based models are applied 
as negative selectors, like various models of absorption, dis-
tribution, metabolism, and excretion (ADME) properties, 
solubility predictions, and other relevant physicochemical 
properties. The object of these computations is to assign a 
relative desirability score to each fingerprint. A fingerprint's 
desirability will increase if it is novel compared to our exist-
ing collection and if it scores well against one or more pre-
dictive models. However desirability will decrease if predic-
tions suggest undesirable ADME or physical properties. A 
final single numeric, relative desirability score is sent back 
across the firewall to the external OIDD secure site. That 
relative desirability score is stored in the database and is 

used to prioritize molecules to be accepted for biological 
screening. 

 This cheminformatics processing minimizes non-drug-
like molecules submitted for screening and maximize the 
chances of screening compounds that will provide the prop-
erties profile(s) targeted for development into viable drug 
candidates. 

5. DIVERSITY OF THE OIDD COLLECTION 

 As described in section 2, the OIDD collection has 
proved to be a source of biologically active molecules that 
significantly complements the internal Lilly compound col-
lection. One measure of its diversity is the variety and global 
nature of compound sources. Since its creation, the OIDD 
program has steadily grown and currently there are in excess 
of 700 individual user accounts created by more than 300 
institutions distributed across 30 countries around the globe. 
About half of the participating institutions are located in the 
United States and about one third in Europe, with the re-
maining distributed among North America, Africa, Asia, and 
the Middle East (Fig. 5). 

 Because of the selection criteria, it is anticipated that the 
OIDD collection should evidence significant diversity, com-
pared not only to the Lilly collection, but also to other publi-
cally available compound sources. To illustrate this point, a 
fingerprint similarity comparison of the OIDD collection 
with the PubChem database, a publically available repository 
of molecular structures containing about 20 million unique 
structures, was performed. The results of this comparison 
showed that the OIDD collection is significantly different 
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Fig. (5). The OIDD Global Outreach. 

 
from the PubChem collection. The similarity metric used for 
this comparison was a composite of binary fingerprints and a 
small set of molecular properties, previously described in the 
OIDD cheminformatics processing (vide supra). 

 Therefore, for each OIDD molecule the distance from 
that molecule to each molecule in PubChem was computed 
in order to determine the shortest distance from the OIDD 
molecule to any molecule in PubChem. During this exercise, 
a locally-hosted copy of PubChem was used to ensure that 
all OIDD fingerprints were never transferred outside the se-
cure space they occupy at Lilly. A histogram of the shortest 
distances measured in this comparison was then generated, 
representing number of molecule instances at that particular 
distance. In this manner, a few molecules within 0.15 dis-
tance of a PubChem molecule were observed, but very im-
portantly, a large proportion (71%) of the OIDD molecules 
are significantly different (distance > 0.1) from anything 
known in the PubChem database, demonstrating that the 
OIDD program is indeed accessing very novel molecules 
(Fig. 6). 

 Comparing the chemical space of compound collections 
is not a trivial task since it is very dependent on the method 
used and the structural representation of the compounds. 
Traditionally, compound databases have been compared us-
ing physicochemical properties, or fingerprints. These com-
parisons usually focus on only one or two criteria that do not 
always necessarily provide a comprehensive assessment of 
its chemical space [11]. For a more comprehensive analysis 
of the density coverage of the OIDD collection chemical 
space and its comparison to the internal Lilly collection and 
PubChem, projections of the collections on the two principal 
components (PC) of property space were carried out, using 
molecular weight, cLogD at pH7.4, aromatic density, frac-
tion of sp3 atoms, and H-bond donor and acceptor as the 
descriptors. Analysis of the property space by means of PC, 
illustrates that the OIDD collection has different degrees of 
overlap with the property space defined by either the Lilly or 

the PubChem collections, and shows a distinctive distribu-
tion in property space in comparison with both collections 
(Fig. 7). 
 

 

Fig. (6). OIDD Structural Diversity Relative to PubChem & Lilly 

Collection. 

 
 Another method utilized for structural characterization of 
different compound collections is based on an approach in-
troduced by Sauer and Schwarz utilizing principal moments 
of inertia (PMI) to describe the overall three-dimensional 
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Fig. (7). OIDD Property Space Comparisons with Alternative Diversity Sources. 

 
shape of molecules [12]. More recently, efforts by Clemons 
and Schreiber have shown this method to be useful for de-
scription and comparison of compound collections [13]. A 
similar analysis performed on the OIDD compound collec-
tion shows that the overall shape is heavily “rod-like” in na-
ture with a significant degree of “spherical” character. Over-
all, the OIDD collection does not have a significant represen-
tation of “flat” compounds, correlating with high sp3 content 
within the collection. This shape distribution distinguishes 
the OIDD collection from Lilly and the PubChem compound 
collection (Fig. 8). 

6. THE OIDD COLLECTION AND DRUG-LIKENESS 

 In order to be safe and effective, an orally administered 
drug requires potency and selectivity for its therapeutic tar-
get, as well as an acceptable balance of ADME properties. 
As ADME properties are determined in large measure by the 
compound’s physical properties such as lipophilicity and 
solubility, investigators make every effort to work at the in-
terface between structure activity relationships (SAR) and 
structure property relationships (SPR), as they conduct mul-
tiple iterations of the “design-test-modify” research cycle. 
Unfortunately, many times improvement in one property 
leads to unfavorable changes in another. In terms of com-
pound design, structural modifications that affect molecular 
size, topology and flexibility are important considerations. 
Among the key physicochemical assessments (pKa, solubil-
ity, permeability, stability and lipophilicity) solubility is rec-
ognized as being particularly important. Compounds with 
insufficient solubility carry a higher risk of failure during 

discovery and development, since low solubility may com-
promise other property assays, mask additional adverse 
properties, influence both pharmacokinetic and pharmacody-
namic properties of the compound, and finally affect the 
ability to develop the compound [14]. Poor aqueous solubil-
ity is caused mainly by high lipophilicity and strong intermo-
lecular interactions which make the solubilization of the 
solid energetically expensive. If solubility is incorrectly es-
timated, this can lead to erroneous interpretation of results in 
a number of in vitro assays and weaken the interpretation of 
SAR [15-17]. 

 In order to improve the likelihood of finding orally avail-
able small molecule drugs, chemists have long sought to 
define the boundary conditions for small molecules to be 
acceptable as potential drugs. Since medicinal chemists can 
calculate parameters like MW, cLogP, cLogD, rotatable 
bonds, and topological polar surface area (TPSA), these 
measures are often substituted at the molecule design stage 
for more complex properties such as solubility. In 1997 Lip-
inski formulated the so called "Rule of 5" (RO5) as criteria 
for oral bioavailability [18], a major breakthrough for the 
cheminformatics community. The RO5 stated that poor ab-
sorption or permeation are more likely when there are more 
than 5 H-bond donors (HBD); molecular weight (MW) is 
over 500; cLogP is over 5; and the sum of H-bond acceptors 
(HBA), N’s and O’s is over 10. While the rule is useful as a 
mnemonic device, it is too simplistic to identify all drug-like 
molecules, as many of today’s blockbusters fail Lipinski 
rules. 
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Fig. (8). Principal Moment Inertia (PMI) analysis of the OIDD, Lilly & PubChem collections. 

 
 Since Lipinski, various groups continue to refine and 
publish profiling methods in the attempt to define drug-
likeness [19] and lead-likeness [20] and improve predictions 
to increase the efficiency of drug discovery. The RO5 has 
been revisited many times with a number of variations, [21-
23]. Thus, another modification that defines the concept of 
lead-likeness is the “Rule of Three” (RO3) [24]. A RO3-
compliant compound is defined as one that: has no more than 
3 HBD and 3 HBA, MW is less than 300, cLogP is not 
greater than 3, and has no more than 3 rotatable bonds. 

 Approaches that avoid the hard cut-offs present in sys-
tems similar to RO5 and RO3 and instead allow for accept-
able trade-offs to be defined have become more common. 
These so-called desirability functions map a property value 
onto a scale between zero and one, representing the desir-
ability of a compound with respect to that particular prop-
erty. An ideal value will achieve a desirability score of one, 
while a completely unacceptable value will receive a desir-
ability score of zero. Desirability scores of individual proper-
ties can then be easily combined into an general “desirability 
index” to reflect the overall quality of a compound by adding 
them together or taking the average or geometric mean. Still, 
the results may be easily interpreted, since the impact of each 
individual property to the overall desirability index can be 
calculated to guide strategies to improve the overall quality.  

 A group at Pfizer has described an application of desir-
ability functions to prioritize compounds with a greater 
chance of success against a central nervous system (CNS) 
target. Its CNS Multi-Parameter Optimization approach 

(CNS-MPO) employs six calculated physicochemical pa-
rameters (MW, cLogP, cLogD, TPSA, HBD and basic pKa) 
to calculate a desirability index in the range of 0 to 6. This 
group reported that 74% of a set of marketed drugs for CNS 
targets achieved a CNS-MPO index of � 4, compared with 
only 60 % of the Pfizer candidates, a statistically significant 
difference. At one level, this can be considered as a measure 
of CNS drug-likeness. Therefore, in order to determine how 
molecules submitted to OIDD relate to other compound col-
lections using the MPO index, a comparison between the 
OIDD collection and diverse subsets of the PubChem and 
Lilly collections was initiated. Within the OIDD collection, 
70% achieved a CNS-MPO index of � 4 compared to 64% 
for PubChem and 68% for the Lilly collection. Furthermore, 
this trend continues when evaluating the “active” compounds 
from the OIDD collection, with 66% of all OIDD actives 
having a MPO index � 4. Clearly, the biological activity ob-
served is not concentrated in the subset of compounds with 
sub-optimal physicochemical properties. 

 It has also been reported that a high CNS-MPO index 
correlates with positive outcomes for several key In vitro 
ADME and toxicity endpoints including permeability, meta-
bolic stability, active transport by P-glycoprotein, cytotoxic-
ity and hERG inhibition [25]. Although this approach was 
intended to improve the potential to design compounds with 
good CNS penetration, the underlying principles were fun-
damental in nature, such that they were extended beyond the 
CNS drug space. This approach allows for a holistic assess-
ment of drug-like ADME and safety properties that does not 
rely on a single property, although the selected parameters 
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contain a significant bias toward lipophilicity as the key 
element. 

 As the understanding of the importance of lipophilicity to 
shape ADME has increased in the past decade and with this 
relationship firmly established, attention has turned to find 
other molecular descriptors that can be also correlated to 
clinical success through their influence on physicochemical 
properties. Recent studies have provided additional molecu-
lar descriptors that complement the well-established phys-
icochemical properties (MW, lipophilicity, and ionization 
state) by incorporating factors that relate to molecular topol-
ogy such as aromatic ring count, fraction of sp3-hybridized 
carbons (Fsp3), chiral atom count, aromatic atom count, sp3 
atom count, and fraction of the molecular framework (fMF) 
[26-31]. 

 Yang and colleagues investigated how various important 
ADME properties are influenced by two molecular descrip-
tors related to the molecular topology, fMF and Fsp3 (meas-
ure of saturation) [32] and uncorrelated with molecular size 
and lipophilicity. The results reported not only confirmed 
that MW, lipophilicity, and ionization state are very impor-
tant descriptors for ADME predictions, but also demon-
strated that ADME properties are substantially influenced by 
molecular topology. Of particular interest is the finding that 
both fMF and Fsp3 influence aqueous solubility (Table 1). 
Solubility decreases with increasing fMF and increases with 
increasing Fsp3, and this trend is independent of the ioniza-
tion state of the molecule [33]. 

 
Table 1.  Summary of the Influence of fMF and Fsp

3
 on Inves-

tigated ADME Assays [33]. 

 Fsp
3
 fMF 

Aqueoussolubility Fsp3� , solubility� fMF � , solubility � 

Caco-2 permeability Fsp3� , Caco-2� fMF � , Caco-2 � 

hPPB Fsp3 � , fu� fMF � , fu � 

hERG Inhibition No Influence 
fMF � , hERG 

inhibition � 

CYP3A4 Inhibition No Influence 
fMF � , CYPD3A4 

inhibition � 

 
 Frequently, more highly complex molecules with respect 
to saturation have greater three-dimensionality and reduced 
conformational flexibility. Since protein-binding sites also 
have a high degree of three-dimensional character, this 
should increase receptor/ligand complementarily due to the 
increased opportunity to incorporate out-of-plane substitu-
ents and to adjust molecular shape. Additionally, the reduced 
conformational flexibility that saturation imparts also re-
duces the number of potential protein interacting partners for 
a given molecule, and therefore increasing sp3 character may 
also result in greater selectivity and fewer off-target effects. 
Lovering and colleagues have identified a very simple de-
scriptor for saturation which is easily interpretable [28]. As 
compounds are prepared in the drug discovery setting and 
transition from discovery through clinical trials to drugs, 

those that are more highly saturated are more likely to suc-
ceed in these transitions. Thus, the average Fsp3 is reported 
to be 0.36 for discovery compounds and increased to 0.47 for 
drugs, and this trend is carried through all of the stages from 
discovery to drug, where each phase had a higher Fsp3[28]. 
If one compares the Fsp3 values for the Best Selling Drugs 
set [34], PubChem, Lilly and the OIDD collection, the OIDD 
molecules compare favorably in this dimension as well  
(Table 2). 

 

Table 2.  OIDD Calculated Fsp
3
 Values Versus Other Datasets. 

Data Set Fsp
3
 Average 

Lilly collection 0.32 

PubChem 0.36 

OIDD collection 0.39 

Best Selling Drugs 0.41 

 

CONCLUSION AND PERSPECTIVES 

 The OIDD program has exemplified several new strate-
gies in the way pharmaceutical companies can interact with 
the external scientific world. It is anticipated that these inter-
actions will produce new science and potentially lower costs 
and further increase the quality of pharmaceutical innova-
tion. Early results are promising, with a network of hundreds 
of affiliated academic institutions and small biotech compa-
nies submitting thousands of samples for evaluation in the 
OIDD screening panel, resulting in several collaborations 
currently ongoing. 

 The OIDD platform has harvested a unique set of com-
pounds with drug-like characteristics and when compared to 
both the internal Lilly collection as well as the publically 
available PubChem dataset, the OIDD collection has shown 
to be significantly dissimilar and with a different distribution 
in property space and in shape diversity. 

 The OIDD business model rests on the ability to auto-
matically evaluate thousands of virtual structures to select 
those eligible for biological screening, without any human 
intervention in order to provide complete protection of the 
submitter's intellectual property. This is achieved via the 
conversion of chemical structures into molecular fingerprints 
on the secure OIDD web application before their utilization 
in chemoinformatics analyses. For those computations that 
need to be performed on Lilly internal chemoinformatics 
servers, only these fingerprints, and not the structures them-
selves, are transferred. As a natural extension of this ap-
proach, the OIDD program is reaching out to the global 
computational chemistry community by introducing a variety 
of Lilly-developed modeling tools that will provide investi-
gators the option of designing molecules with desirable drug-
like properties or suited to a particular biological target. Both 
SPR and SAR tools will be made available to authorized 
users to provide participants access to cutting-edge technol-
ogy via the OIDD website portal.  
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 As the Open Innovation Drug Discovery program contin-
ues to evolve, other research modules will likely be added. 
Scientists from all over the world are taking advantage of 
this resource to open new opportunities and to test novel 
therapeutic hypotheses that deepen the understanding of 
complex biological systems. Through this initiative and oth-
ers like it, our steadfast goal remains focused on the discov-
ery of novel therapeutics that will improve patients' lives. 
This is our ultimate measure of success. 
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